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INTRODUCTION

The search for "optimal" shell finite elements has been underway for nearly two decades.
In recent years, it has further accelerated in light of significant progress in the technology of
shear-deformable C' bending elements (e.g., References 1-19). Although the main obstacles
for these developments, known as shear and membrane locking phenomena, have been
addressed extensively and several remedial schemes have been proposed, a viable three-node
doubly curved shear-deformable element, which is the most desirable element for general shell
analysis, has not yet been developed. The purpose of this effort is to derive such an element.

We base our finite element derivation upon Reissner-Mindlin plate theory which will con-
stitute the bending part of the element. To account for the membrane deformations and the
membrane-bending coupling associated with the shell-element curvatures, we shall resort to
Marguerre's shallow shell equations. Shallow shell elements of this type specialized to the
axisymmetric response proved effective in discrctizing shallow as well as deep shell struc-
tures.12 The major advantage of this analytic approach over general shell formulations (e.g.,
References 5 and 18) is its inherent simplicity. Herein, the displacements and stress resul-
tants are attributed to the element reference plane. Consequently, integrations are carried
out across the reference plane rather than the curved surface as in the general shell elements.

According to Reissner-Mindlin theory,20 22 the strain-displacement relations can be
expressed as:

K = { 1Cxx) = L (e ) (1)

= {Yxz, Yyz) T  - L2(w) + (2)

where e and y are, respectively, the curvature and transverse shear strain vectors, a is the
bending rotation vector

ST = {e ,e X  (3)

with 0, and 0y denoting the bending rotations about the x and y axes, respectively, w is the
transverse displacement (refer to Figure 1), and the superscript T denotes transpose: L, and
L2 are the linear differential operators, and I is an identity matrix:

a
- 0

L[ 0 V L2 x (4)
[3 0 1

a a [
ay ax Ry

The Marguerre membrane strain-displacement relations for a thin shallow shell have the
form:23

= L 1(u) + Ln(&)L 2 (w) (5)

with

U = {u,v}



where u and v are the membrane displacements in the x and y coordinate directions, respec-
tively; and = , (x, y) is the initial height of the shallow shell.
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Figure 1. Shallow shell notation.

One important aspect, which in previous attempts to merge Reissner-Mindlin and
Marguerre theories has not been addressed, 9 12 is the conceptual difference in the transverse
displacement variables appearing in Equations 2 and 5. In Equation 2, w is a weighted aver-
age transverse displacement across the thickness, whereas in Equation 5, w represents the mid-
surface transverse displacement. The former variable comes into play due to the inclusion of
shear deformation in Reissner-Mindlin theory; the latter one is a consequence of the Kirch-
hoff thin-regime assumption, which neglects shear deformation. Utilizing Equation 2, the
Kirchhoff thinness constraint reads:

L2 (w) - - "ie. (7)

Replacing Equation 7 into Equation 5 yields the Marguerre membrane strains consistent with

the Reissner-Mindlin strains:

c = Lj(u) - L1 (;)6. ()

The stress resultants, which are attributed to the reference plane of the shell. are rchatcd
to the strains through the constitutive law:

N = {Nxx, Nyy, Nxy} T  (AE)

M = {Mxx, Myy, M xy T = DIc (10)

S{Qx Qy}T Gy (11)

where A, D, and G are, respectively,' the membrane, bending, and transverse shear constitutive
matrices. For an isotropic shell of constant thickness, t, the constitutive matrices are given by:



I V 0E t [ 0 t 2 A

(i- v2 ) iy. 0 ) D = -- A,

(Ila)

G k 2tG [ 1 j
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where E is Young's modulus, G is the shear modulus, and v is Poisson's ratio; k2 = 5/6 is
Reissner's shear correctij factor.20

The principle of virtual work can then be employed to derive the fiilite element stiffncss

equilibrium equations:

S(N T6c + HT6K + Q T 6y - q6~) dA -0 (12)

A
where q is the distributed transverse load'ng, A is the reference plane area, and 6 denotes
the variational operator.

FINITE ELEMENT ISSUES

The development of effective curved shear-deformable shell elements is severely hampered
by the "locking phenomena" (extreme stiffening), reflecting the inability of the shell to bend
without stretching ("membrane locking") and transverse shearing ("shear locking"). The two
phenomena are directly linked to the penalized strain energy which, in its nondimensional
form, can be expressed as:

UC(K,Y,) = Ub(SK) + cLsUs(S) + CmU () (13)

in which Ub(), U,(Y), and Uma(C) denote the nondimensional bending' transverse shear, and
membrane energy integrals; and a, and am are the nondimensional shear and membrane pen-
alty parameters, respectively. Note that a, = O(A2/t 2) and am = O[(K ,)'/t , where ,l and , -
are, respectively, some characteristic span and curvature of the shallow shell. 1.1. As the shell
thickness, t, diminishes to zero, both a s and am approach infinity, thereby enforcing the vanish-
ing shear and membrane strains:

L2(w) - -10 (Kirchhoff constraints) (I 4a)

L1 (u) - LI()e (Membrane inextensibility constraints). (14b)

The particular appeal of this theory is that the variational statement, Equation 12,
requires a class of C' continuous approximations for the w, u, and 0 fields (since their high-
est spatial derivative in Equation 12 is of order one) and, therefore, simple shape functions
can be used. On the other hand, constraints, Equation 14, when imposed at the element
level, pose severe limitations on the kinematic freedom attainable bv each element. often
resulting in shear and/or membrane locking.
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For a successful discretization of the theory, a consistent resolution of the locking deficien-
cies must be sought. In Reference 4, we have elaborated on an approximation strategy dcal-
ing effectively with the aforementioned difficulties, which involves a redefinition of the
penalty parameters to allow relaxation of Equation 14 at the element level and an implementa-
tion of appropriate interpolation schemes which may best accommodate Equation 14. We
shall pursue both of these avenues in deriving our three-node shallow shell element.

Review of Penalty Relaxation Concept

The first facet of our approximating strategy deals with the issue of relaxing the enforce-
ment of penalty constraints at the element level.

Concurrently with the element displacement approximations denoted as w h,  h and 8 h

(henceforth, h signifies a characteristic length scale of the discretization), we approximate the
constitutive matrices A and G by incorporating the "element penalty relaxation" parameters:

Nh = 2 2AE h , Qh = €2Q G h , Hh= Dch (15)
M S

where the element strains are

h h _ h h h h h h
h Ll(u ) L(&)O , y = L2 (w ) + 10h , K = LK(Oh ) (16)

and the penalty relaxation parameters are nondimensional positive quantities of the form:

?= ( + C.i ' ) (i= rM,s) (17)

where C are positive element constants, and ai are element analytic penalty parameters.
Note that a, = O(h 2/t 2 ) and am = O[(/ hh2)2/t2], where Cq represents some characteristic ini-
tial curvature of the element. The corresponding principle of virtual work for a single cle-
ment approximation takes the form:

fe [(,h)T6ch + (Mh)T6Kh+ (h)T 6yh - q6wh I dA - 0

A
where integration extends over the element reference plane with Ae denoting the element rcf-
erence area. The resulting element strain energy appears in the basic form of Equation 13,
except that all quantities are superscribed with h (i.e., element approximations); however, the
element penalty parameters take a fundamentally different form:

h
a = C./(i + C.a.) (i m,s). (19)

An heuristic argument in support of Equation 19 may be stated as follows. As t-0.
some degree of relaxation of constraints, Equation 14, may be expected as now a approach
finite penalty values Ci l , which for low order elements are of O(1). 4 These thin-regime pen-
alty numbers (Ci -l ) can be seen to be element/interpolation dependent. Thus, higher order
kinematic interpolations may necessitate larger C, 1 (i.e., smaller C), which will ensure stricter
element-level enforcement of the vanishing penalty constraints, Equation 14. Conversely, low
order kinematic interpolations may require smaller C)l to allow for greater element-level rclax-
ation f Equation 14. Clearly, in the limiting case when the element kinematic frcedorms arc
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sufficient to capture the exact solution of the problem, C,-1 can be very large (or simply,
Ci = 0), in which case Equation 19 takes on the analytic (unrelaxed) form.

From a practical computational perspective, Ci can simply be selected once and for all
(for a particular element) from a rather limited series of numerical tests. As the kinematic
approximations improve with the h-refinement (i.e., as h-0, , h --0), a hi approach their ana-
lytic values ai, thus ensuring convergence to the "true" solution both in the constitutive and
kinematic sense. 8g11 2 As will be demonstrated by our numerical examp!es, the penalty
parameter of Equation 19 is responsible for removing whatever spurious constraining may
have existed in the "unrelaxed" element kinematics.

Anisoparametric Interpolation Scheme

A complementary means for enhancing element behavior is by way of appropriate kine-
matic interpolations, termed anisoparametric, 13 which can best accommodate the requirements
of Equation 14. The anisoparametric strategy suggests distinctly different degree polynomials
for w, 0, and u to reflect the differences in the order of the differential operators L2 and I
in Equation 14a and, likewise, L, and Lt( ) in Equation 14b. (These contrast the well-
established isoparametric interpolations; identical degree polynomials for all kinematic vari-
ables.) The specific aim is to design out the unwanted "spurious" constraint equations that
may arise from Equation 14.

To represent the bending part of the shell element, we adopt the three-node
anisoparametric plate element, 3,1 in which 0. and 0y are interpolated linearly, while w is rep-
resented by a complete quadratic polynomial; throughout the formulation, area-parametric coor-
dinates = (G1, 42, 3) are used as a basic for all interpolations (refer to Figure 2):

6r=h N()h (I--x,y), wh= N (2)W (20)

where N 1) and N(2) are the row vectors of linear and quadratic shape functions, respectively.
and

h)T = } (h)T = {h (=x,y; j=1,2,3; k=1, ..,6) (2)

are the vectors of nodal dof.
Adopting the shell element of constant curvature [i.e., interpolating h(4) pr:rblicil-']

constraints, Equation 14b, necessitate a complete 10-term cubic polynomial for the u and v
displacements:

h= (3)h vh= N( 3 ) h (22)

where N(3) is a row vector of cubic shape functions, and

h T = h hT= {Vh (,.l

arc the vectors of nodal dof.

5
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Figure 2.

Evidently, the anisoparametric interpolations produce the same degree polynomial represen-
tations for the left- and right-hand sides of the constraint equations, Equation 14; the condi-
tion that is paramount to improving element behavior in the vanishing thickness regime.

Edge Shear Constraints

Although the initial wh rests on six w h dof (i.e., three corner and three midedge dot). a
kinematically consistent elimination of the midcdge dof is possible a priori to the clement stlY-
ness derivation. To obtain a three-node pattern, w can be constrained by the one-dimensional edge constraints: W

(k) a F h)

,(k) = I-[ wh(s),s+ h(s)J = 0 (k=1,2,3) (24)

where s denotes a coordinate running along the kth edge of the triangular element reference
plane; and Ohn(s) is the tangential edge rotation which is related to 0 d(s) and 0,(s) via an
orthogonal transformation. From Equation 24, there results three decoupled equations in
terms of the midedge w h dof, which give rise to the constraints:

,h= w ,h+ w oh + w eh (25)
C 0 XX yy

where Wq (q = o, x, y) are 3 x 3 transformation matrices, and



hT= {W+h (h)T = {W (j=1,2,3). (26)
Cj+3

Upon substituting Equation 25 into Equation 20, we obtain a three-node interpolation for
the transverse displacement.

Edge Membrane Constraints

In the manner analogous to the above dof reduction for wh, one-dimensional edge con-
straints can be devised to condense out the intraedge uh and vh dof. The following con-
straint equations provide four edge-compatible relations for each edge:

(k) _(k)

p 
_- -s s n J 0 (k=1,2,3; p=1, 2 ) (27)

as s)(S sp  h hh h h
V's- S n fl s

where u h(s) and v h(s) are cubic displacement fields along and normal to the k-th edge, respec-
tively, and

q (4), (q= s,n; k=1,2,3

C (2)

are the k-th edge slopes.

By the use of appropriate orthogonal transformations, Equation 27 is expressed in terms
of the shell element variables of interest, namely, u h, vh, h X and h y dof, and alhebraicallv
solved for the intraedge u h and vh1 dof:

Uh U h +Uah + U 0huUuh+U+U

C 0 XX yy

Vh V Vh + o6h + 0h (Q)
v =Vh +Vh +Vh
C 0 X X yy

where

(h)T = Uh (Vh)T = (Vh(uh)T = {uh}, (vh) r  {vh} (i=4, .... 9) )
C 1 C 1

and Uq and Vq (q = o. x, y) are 6 x 3 transformation matrices. Equation 29 is substituted
into the initial interpolations, Equation 22, to give the constrained fields for the membrane
displacements in terms of the corner-node dof and two centroidal dof. The la'ter dof are con-
densed out statically after the formation of the element stiffness matrix and consistent load
vector. Consequently, a three-node, 15 dof element pattern is achieved.

Note that the edge constraint procedures just described preserve the original polynomial
order of the constrained variables (w h, u and vh); moreover, one can show that the con-
strained fields are fully compatible across element edges, and they allow for rigid body motion

7



without straining. For further details on this procedure and for the explicit form of the
shape functions, refer to references 13 and 14.

The remainder of the formulation follows standard finite element procedures. Application
of the virtual work statement, Equation 18, while performing exact integration (normal quadra-
ture rule,') throughout, yields the element stiffness equations. The issue of the rotational vari-
able normal to the reference plane, 0h , needed to prevent mathematical singularities in the
global coordinates, produces three additional dof for the element (e.g., see Reference 10).

NUMERICAL EXAMPLES

An important step in completing the relaxation methodology of the Finite Element Issues
Section is to obtain appropriate a, parameters and the values for C, (i = m, s). Herein, wkc
adopt the approach developed in Reference 13, where ai are defined as:

. k./ Z k (i-s,m; b - bending) (31)
i .t b-

in which kei, and k b denote ti,; element diagonal stiffness coefficients associated with 6h and
0 h dof for the unrelaxed case, i.e., 0 i = 1. As far as the "optimal" values for C, and Cm,

these are determined from numerical testing. The shear relaxation constant, Cs = 2, has
already been established to ensure free of locking plate-element behavior;' 3 Cm = I was cho-
sen from the numerical results of the present study.

The present element was tested on a series of challenging thin shell problems, 24 '2 5 and a
moderately thin shell. To ascertain the influence of the membrane penalty relaxation and the
membrane anisoparametric kinematic field upon element behavior, three versions of the ele-
ment were tested. They are:

" MIN3: A facet triangle (Kch = 0) with the shear relaxation (C, = 2), possessing con-
stant membrane strains, no membrane-bending coupling, and no membrane relaxation
(t'm = 1).

" MIN3S: A curved triangle with the shear relaxation only (C, = 2, Cm = 0).

" MIN3SM: A curved element with both the shear and membrane relaxations (C, = 2.
Cm = 1).

Our findings are summarized as follows.

'rest of Rigid-Body Motion: A spectral ana!ysis was performed on the element stiffness
matrix for the facet, singly curved, and doubly curved elemen, geometry, to check MIN3's abil-
ity to move as a rigid body without incurring any straining. Under all conditions tested, there
resulted six requisite zero eigenvalues associated with rigid body motion.

Thin Cantilevered Arch: A simple test of both membrane inextensibility and shearless
deformation is a 900 thin circular arch clamped at one end and loaded by a bending moment
at the other (Figure 3). An additional modeling difficulty here is that the arch is rather nar-
row (radius/thickness ratio: R/t = 272; width/thickness ratio: B/t = 1), hence the element
aspect ratios are large. At all discretization levels, a constant value of the applied bending
moment is recovered in each element, with all other stress resultants vanishing. Figure 4
depicts a convergence study of the tip bending rotation, which is also a direct measure of th,



strain energy for this problem. Note that while MIN3S exhibits considerable membrane stiffen-
ing, MIN3 and MIN3SM experience no such difficulty, converging rather rapidly, with the
facet element being slightly more flexible. Both MIN3 and MIN3SM yield results of accept-
able engineering accuracy, even under coarse discretizations.

CANTILEVERED ARCH

Figure 3. 90 thin cantilevered arch under tip moment (R/1 = 272).

-.*-MIN3
-*-MIN3S

-" R/t =272, B/t=1.

..

.9o .
1 -0

-60-
3 S g
NUMBER OF" NOOES PER S(OE

Figure 4. 900 thin cantilevered arch; convergence
study of tip rotation under applied moment.

Open-Ended Pinched Cylinder: The open-ended cylindrical shell subjected to two radial
torces 180 degrees apart (Figure 5) is a widely used test problem to establish how well a sin-
gly curved shell element can represent inextensional bending." '5 As t/R--0, pure inextensional
state of deformation is attained in the cylinder.

Figure 6 depicts a nine-node-per-side discretization (128 elements) and its deformed shape
for a symmetric octant of the cylinder. Figures 7 and 8 show convergence studies of the
deflection under the load for the moderately thin (R/t = 50) and thin (R/t = 2000) cylinders.
The present results a,, .. ompared with exact solutions and those obtained with three reduced
and one fully integ!-':. Reissner-Mindlin quadrilateral elements. These elements are:

* 911-S2: Nine-n.,A, 'ctcrosis element with selective integration.



" 8S-U2: Eight-node serendipity element with uniform integration.

" 4L-SI: Four-node Lagrange element with selective integration.

" 16L-U4: Sixteen-node T -grange fully integrated element.

For specific details on these elements and references thereof, refer to References 1 and 5.

PINCHED CYLINDER WITH OPEN ENDS

P
L : 10.35

La 2 R: 4.953 6
E z 10.5 X 10

Y:z 0.3125

P

Figure 5. Pinched, open-ended circular cylinder.

P/4

10.

\N~~

\ /

Figure 6. Pinched, open-ended circular cylinder;
triangular element discretization for symmetric
octant. Ulndeformed and deformed shapes.
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Figure 7. Moderately thin-pinched cylinder (R/t = 50); convergence
study of tip displacement under applied force.

1 .2 •-- - 9H -52

R/t 2000 - 5-U2
t . I -E-4L-SI

-7- [6L-U4
>Ti -L- IN ---

> . 0--- INEXrENSIONKL

.90

3 6 9 12 15 18
NUMBER OF NODES PER SIDE

Figure 8. Thin-pinched cylinder (Rt = 20001; convergence
study of tip displacement under applied force.

Clearly, all three MIN3 versions perform very well, with MIN3 being the stiffest of the
three while MIN3SM exhibits the most flexible behavior. Evidently, MIN3SM is equally com-
petitive with the best performing quadrilateral (9H-S2) for this problem.

Scordelis-Lo Roof: The geometric description, loading, and material data for this mem-
brane-response dominated cylindrical shell are presented in Figure 9.'" In Figure 10, a
thirteen-node-per-side mesh and the corresponding deformed shape are shown for a symmetric
quadrant of the shell. Figure 11 shows a convergence study of the vertical displacement at
the midpoint of the free edge of the cylinder. The finite element displacement is normalized
with respect to a converged numerical solution, V = 0.3024. Is

The results obtained with four different membrane-strain approximations for the Discrete
Kirchhoff Triangle (DKT) element 7 (taken from Reference 25). are also included in this
study. Note that DKT is strictly a thin bending element (no shear deformation included).
Briefly, the four DKT elements are:

I1



" DKT/CST: A facet triangle (no membrane/bending coupling) with constant membrane
strains.

* DKT/CST*: A constant-strain triangle but which includes membrane/bending coupling

via a membrane projection scheme.

" DKT/LST: A facet triangle (no membrane/bending coupling) which incorporates a lin-
ear membrane field and reduced integration of the membrane strain energy.29

" DKT/OB: A facet triangle (no membrane/bending coupling) with a linear membrane
field.

30

The best performing elements for this problem are DKT/OB, DKT/LST, and MIN3SMI:
DI'T/CST and DKT/CST* exhibit considerable membrane stiffening, showing a very slow rte
of convergence. Also note that MIN3 and MIN3S, although somewhat stiffer than MIN3S.I.
perform comparably and converge rapidly.

SCOPHELIS-LO POOF

IIFORH VERTICAL LOAD 90.0 MIT AREA
L = 50.0
R = 25.0
t = 0.25
E =4.32 X <to

RIGID \,0!

Figure 9. Scordelis-Lo roof; vaulted roof under dead uniform
load supported by rigid diaphragms.

--IV

Figure 10, Scordelis-Lo roof; triangular element discretization for
symmetric quadrant. Undeformed and deformed shapes.
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Figure 11. Scordelis-Lo roof; convergence study of vertical
displacement at midpoint of free edge.

Pinched Hemisphere: A thin hemispherical shell under self-equilibrating radial forces is a
rather challenging test problem for doubly curved shell elements.2 The shell is in the state
of near extensional bending, having large rigid-body rotations in the deformed configuration.
Many commonly well-behaved elements, both of quadrilateral and triangular shapes, exhibit sig-
nificant membrane stiffening when modeling this problem.,2 5

Figure 12 depicts a nine-node-per-side discretization of a symmetric quadrant of the hemi-
sphere. Figure 13 shows a convergence study for the radial displacement under the applied
force which is normalized with respect to an analytic solution. 31 For comparison, results with
the four DKT elements are also included. It is evident that both DKT/OB and MIN3S
exhibit excessive membrane stiffening, while the other elements suffer no such deficiency and
converge rapidly; MIN3SM again evolves as a reliable performer.

PIN-Qf IHISPERE
FIXED

R:I.
t :0.04/ -
E-6.825X 10

SYM / , \\\ ,- i

/\ .F1.0

Figure 12. Pinched hemisphere; triangular element discretization
for symmetric quadrant.

13



.2Kr/Ur
J A, 1 f / C " T '

i OKrfL5[

-- ~~~ I o-lN3
MI N35

90 .I

u8j .8

70

•.60 T

5 7 9 1 1 3 15 17
NUMBER OF NODES PER SIDE

Figure 13. Pinched hemisphere: convergence study of
displacement under applied force.

Semicircular Moderately Thick Arch: A moderately thick semicircular arch (R/t = 8),
clamped at both ends and subject to a central vertical force (Figure 14), is known to exhibit
significant membrane and shear deformations.11 The arch can be analyzed, for example, using
meshes for the pinched cylinder problem, with the appropriate boundary conditions and load-
ing as shown in Figure 14. Additionally, to ensure the x-y plane deformations only, all out-of-
plane global degrees of freedom are restrained in the model (i.e., w = 0x = oy = 0). The
analytic solution for the deflection under the load can be found in a straightforward manner
according to the Timoshenko beam theory, and it will serve as a benchmark in studying con-
vergence for this problem. Figure 15 shows convergence results for the deflection under the
load, which is normalized with respect to the thin (inextensional) solution, Vthin. Also shown
is the exact solution, Vexact = 1.2015 Vthin (which includes shear and membrane deforma-
tions), and the extensional solution, Vmxact = 1.1299 Vthi, (which ignores shear deformation).
Note that all three element versions converge to the exact solution, with MIN3SM yielding
the most accurate results.

P/2

P

VV

V

Figure 14. Semicircular moderately thick arch under vertical
force (RAt = 8). Undeformed and deformed shapes.
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Figure 15. Semicircular moderately thick arch; convergence study
of vertical displacement under applied force.

CONCLUSIONS

A three-node, constant curvature shallow shell element (MIN3SM) has been formulated
by way of properly merging the Reissner-Mindlin theory of shear-deformable plates and
Marguerre's shallow shell equations for the membrane strains. The issues of thin-regime
shear and membrane locking have been addressed via shear and membrane penalty relaxation
parameters and edge-constrained anisoparametric interpolations. The element is fully inte-
grated and, hence, kinematically reliable; it possesses six requisite rigid-body modes and has
no "spurious" zero-energy modes.

Solutions to several locking-sensitive singly and doubly curved thin shell problems have
demonstrated the element's excellent modeling capabilities, devoid of both shear and mem-
brane locking. Our numerical tests have shown that MIN3SM is congistently competitive with
the best DKT elements. However, MIN3SM has a practical advantage of having a wider
range of applicability which extends to moderately thick shells.
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